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SUMMARY The incidence of azole resistance in Aspergillus species has increased over
the past years, most importantly for Aspergillus fumigatus. This is partially attributable to
the global spread of only a few resistance alleles through the environment. Secondary
resistance is a significant clinical concern, as invasive aspergillosis with drug-susceptible
strains is already difficult to treat, and exclusion of azole-based antifungals from prophy-
laxis or first-line treatment of invasive aspergillosis in high-risk patients would dramati-
cally limit drug choices, thus increasing mortality rates for immunocompromised pa-
tients. Management options for invasive aspergillosis caused by azole-resistant A.
fumigatus strains were recently reevaluated by an international expert panel, which con-
cluded that drug resistance testing of cultured isolates is highly indicated when antifun-
gal therapy is intended. In geographical regions with a high environmental prevalence
of azole-resistant strains, initial therapy should be guided by such analyses. More envi-
ronmental and clinical screening studies are therefore needed to generate the local epi-
demiologic data if such measures are to be implemented on a sound basis. Here we pro-
pose a first workflow for evaluating isolates from screening studies, and we compile the MIC
values correlating with individual amino acid substitutions in the products of cyp51 genes for
interpretation of DNA sequencing data, especially in the absence of cultured isolates.
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INTRODUCTION

Inhalation of Aspergillus spores, primarily of the species Aspergillus fumigatus, might
result in different clinical manifestations. Whereas sequelae are usually absent in a

healthy host, frequent exposure to spores might foster the development of allergic
bronchopulmonary aspergillosis in individuals with an atopic disposition. Cavitary lung
disease, e.g., following tuberculosis, might predispose individuals to aspergilloma.
Chronic necrotizing aspergillosis is predominantly observed in patients who suffer from
chronic lung disease or mild immunosuppression. Invasive pulmonary aspergillosis is
the most dangerous and life-threatening clinical manifestation and might result from
Aspergillus exposure in heavily immunosuppressed patients (1). In fact, Aspergillus spp.,
primarily A. fumigatus, are the most common emerging fungal pathogens, especially in
patients with malignant hematological diseases who are undergoing intensive chemo-
therapy or after allogeneic hematologic stem stell transplantation. Consequently, pro-
longed neutropenia (�500 cells/�l for more than 10 days) has been identified as a
major risk factor (1).

Over time, several azole-based antimycotic drugs have been developed, among
which itraconazole (ITZ), voriconazole (VRZ), posaconazole (PSZ), and (lately) isavucona-
zole (ISAZ) are mainly used for the treatment and/or prophylaxis of aspergilloses (Fig.
1). Azoles are steric inhibitors of sterol 14�-demethylase enzymes catalyzing a critical
step in ergosterol biosynthesis (Fig. 2A and B).

The infection-related mortality rates are still exceptionally high, despite recent
improvements in prophylaxis, early diagnosis, and antifungal treatment of the disease
(2). The incidence of azole resistance in Aspergillus spp. has increased over the past
years, additionally jeopardizing the outcomes for high-risk populations by failure of
azole-based prophylaxis and first-line treatment of invasive aspergillosis.

Starting with the initial observation in a Dutch strain collection that over the 1990s
numbers of azole-resistant A. fumigatus (ARAf) had increased unproportionally due to
a single resistance allele (3), the same has now been demonstrated on a global level (4).
Different patterns of resistance are seen, with multiazole and pan-azole resistance
being more common than resistance to a single triazole. A variety of mutations in the
coding region of cyp51A (Fig. 2C), a gene encoding a sterol 14�-demethylase in A.
fumigatus, as well as tandem repeats of 34, 46, and 53 bp upstream in its promoter
region (Fig. 2E), have been found to confer, or at least to correlate with, various degrees
of drug resistance. Today, the most frequently observed resistance allele consists of a
34-bp tandem repeat in the promoter region of cyp51A combined with the L98H
substitution (TR34/L98H). This allele confers high ITZ resistance and various levels of
cross-resistance to other azoles. Together with strains carrying a TR46 allele in conjunc-
tion with Y121F and T289A exchanges, such strains are thought to spread globally
through the environment (5), potentially propagated by the use of 14�-demethylase
inhibitor (DMI) fungicides in agriculture. In fact, for many plant-pathogenic fungi,
similar resistance mechanisms toward agricultural azole-based fungicides are observed
(6–10), and their spread to the level of complete replacement of susceptible strains in
some regions (11, 12) is a much discussed topic in phytopathology. The best-studied
example is the wheat pathogen Zymoseptoria tritici, in which the cyp51B paralog has
evolved several resistance mutations in both promoter and coding regions as a result
of azole selection (for an overview, see reference 12).

Resistant Aspergillus strains present in the environment are thought to exogenously
colonize or infect susceptible hosts. These observations are of significant concern, as
exclusion of azole-based antifungals from prophylaxis or first-line treatment of invasive
aspergillosis dramatically limits treatment options (4). A careful reevaluation of remain-
ing management options for invasive aspergillosis caused by azole-resistant strains by
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an international expert panel suggested that, in initial therapy, the environmental
prevalence of azole-resistant strains should be considered in areas where the preva-
lence reaches 10% (13, 14). For example, this may be done by combining VRZ with an
echinocandin or liposomal amphotericin B (13, 15).

In about 20 to 50% of azole-resistant clinical A. fumigatus isolates, no mutations
within the cyp51A locus are observed (16–18); therefore, additional pathways and
factors that confer secondary resistance must exist. In this context, only the HAP
complex member hapE (CCAAT binding complex [CBC]) has been implicated in clinical
ARAf so far (19, 20). Additionally, drug efflux has been discussed to contribute to
resistance (17, 21, 22). Hence, different azole resistance patterns may be multifactorial,
and this must also be considered when encountering isolates with an altered cyp51
sequence (23).

The molecular detection of genetic alterations leading to azole resistance is gaining
importance, given the poor culture-based diagnostic yield for clinical specimens from

FIG 1 Chemical structures of clinically used azole antifungals. Azoles are characterized by five-atom
heterocycles which contain at least one nitrogen atom (red). Compounds containing moieties with two
nitrogen atoms are called diazoles, and those with three nitrogen atoms are called triazoles. Recently
marketed antifungals contain one (B and D) or more (A, C, E, and F) triazole moieties and a benzene ring
substituted with fluorine (A to C and F) rather than chlorine (D and E). Triazole antifungals are derivatives
of either fluconazole (A to C) or ketoconazole (D to F) as the lead compound. This correlates with
cross-resistance phenotypes observed in clinical and environmental isolates (see the text).
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FIG 2 Azole antifungal drug resistance mechanisms in fungal cells. (A) A. fumigatus, including the cell wall (CW) and the
cytoplasmic membrane (CM), in the absence of azoles. Cyp51 activity is required for the biosynthesis of the membrane
compound ergosterol (green). The abcA, cdr1B, and mdr1 genes encode efflux pumps, which are localized in the plasma
membrane. These genes are regulated by different transcription factors (TF), such as AtrR. (B) In the presence of azoles,
some drug molecules can be pumped out through efflux pumps, but intracellular levels are sufficient to inhibit Cyp51A,
resulting in decreased amounts of ergosterol in the membrane. (C) Mutations in cyp51A (asterisk) can reduce target
binding of the antifungal drug, therefore conferring resistance. (D) Overexpression of the drug target Cyp51A can be
mediated by mutations in the HAP complex (HAP*) or by different kinds of tandem repeats within the promoter region
of cyp51A. (E) Increased expression of efflux pumps, such as AbcA, Cdr1B, and Mdr1, increases the drug tolerance of A.
fumigatus. Possible mechanisms for increased transcription may be gain-of-function mutations in the regulating
transcription factors (TF*, AtrR*).
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hematological patients. From a clinical point of view, azole resistance is associated with
therapeutically relevant azole treatment failure that is increasingly reported and plays
a more and more important role, especially in hematology and intensive care unit (ICU)
patients, leading to high mortality rates (24–27).

There is an ongoing debate as to how epidemiologic thresholds should be gener-
ated and to what degree laboratory findings of azole resistance in A. fumigatus outside
invasive aspergillosis should be reported to clinicians (28). Nevertheless, it is evident
that medium- to large-scale environmental and clinical screening studies are urgently
needed to generate epidemiologic data to reassess clinical treatment options on local
or national levels. Molecular analysis of such isolates is not readily available to most
diagnostic laboratories and is far from being standardized. Therefore, we outline here
a stepwise workflow for evaluating isolates from such screening studies to build up
local epidemiologic data (Fig. 3). Furthermore, we created an annotated reference
sequence for easy identification of known polymorphisms in A. fumigatus Cyp51A, in
accordance with their recently proposed unified nomenclature (29), and compiled the
MIC values correlating with individual Cyp51A amino acid substitutions. This should aid
in the interpretation of DNA sequencing data, especially in the absence of a culture
isolate.

SCREENING FOR AZOLE-RESISTANT ASPERGILLUS STRAINS

Clinical guidelines, e.g., by the Infectious Diseases Society of America (IDSA) (30, 31),
do not specify laboratory testing procedures but rather reference the general literature
on the isolation of Aspergillus from respiratory tract specimens (32, 33).

Only recently has it been recommended “. . .to test different, up to five, colonies as
different azole susceptibility phenotypes might be present in a single culture” (13).
Indeed, rapid conidial dispersion is a key feature of Aspergillus spp., especially A.
fumigatus (34). This allows the fungi to rapidly colonize fresh materials and, presuming
a certain selective pressure in the environment, also explains the rapid clonal expansion
of resistance phenotypes (35) and makes mixed samples very likely. Dissemination of
resistant isolates is also directly propagated by human activities (36).

A very educative experiment highlighting how easily conidia of A. fumigatus are
moved through the air was conducted by Kwon-Chung and Sugui (34). In their setup,
fresh agar plates were kept next to a sporulating A. fumigatus culture plate. Compared
to growth in the same setup with A. nidulans, growth was observed on the fresh plates
in a very rapid fashion, despite all attempts to keep the environment free of air
movement. The lecture to be taken here with respect to laboratory work is that, when
handling aspergilli, especially A. fumigatus, working in the best possible sterile envi-
ronment free of air movement is highly advisable to avoid cross-contamination be-
tween samples and/or cultures. In addition, both environmental and clinical samples
may contain susceptible along with resistant fungal material (37, 38). This leads to a
reduced detection rate for resistant strains under regular culture conditions in cases
where susceptible fungal cells pose the majority of the inoculum. In such cases,
additional use of screening agars with included antifungal drugs may be highly
beneficial to suppress the growth of most susceptible strains (Fig. 3). For some samples,
this may lead to the detection of a single resistant colony only. This emphasizes the
need to reduce the number of cross-contaminating conidia from previously cultured
samples. Best practice will physically separate the primary culture from any subsequent
handling of cultures, especially those with resistance phenotypes.

Standardized protocols for screening of environmental samples do not yet exist. This
may be due partially to the heterogeneity of such “environmental samples,” which may
encompass dry soil (e.g., see references 39 to 43), air samples (35, 44–46), plant material
(43), or simply surface swabs (46). For soil, rigorous vortexing in NaCl (43) and plating
of the supernatant following settling of the soil debris have been used. Addition of
0.5% (wt/vol) saponin facilitated the extraction of highly hydrophobic material, i.e., A.
fumigatus conidia (39, 40). To restrict the growth of most potential contaminants,
incubation at elevated temperatures (�43°C) can be used, as A. fumigatus is highly
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thermotolerant (47). However, especially environmental samples from tropical areas
may still yield strong overgrowth with other thermotolerant species (our own unpub-
lished observation).

Drug concentrations for screening agar plates used in the literature range from 0.5
�g/ml for PSZ (48, 49) to 1 to 4 �g/ml for ITZ or VRZ (39, 43, 48–50). At the lower end
of the concentration range, a higher false-positive rate may be observed (39). When
working with the goal of isolating A. fumigatus, specifically screening for fluconazole
resistance is not necessary, as A. fumigatus is intrinsically resistant to this compound
(51–53).

Different mutations leading to singly elevated resistances to particular drugs only
are known (Tables 1 and 2). MIC values measured for isolates with altered azole
susceptibility are cumulated in Tables 1 and 2. MIC values for tests done according to

FIG 3 Potential sampling workflow for ARAf screening studies. No standardized scheme for conducting screening studies is
established yet, but combining several approaches proposed in the literature gives rise to an efficient workflow that eliminates
false-positive results and yields robust numbers on the prevalence and phylogenetic cohesion of resistant isolates.
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the European Committee on Antimicrobial Susceptibility Testing (EUCAST) protocols
were taken from previous references (16, 18, 24, 26, 38, 42, 44, 49, 54–81), and MIC
values for tests done according to the Clinical and Laboratory Standards Institute (CLSI)
protocols were taken from other previous references (3, 35, 43, 45, 50, 82–107).

Clinically used antifungal triazole compounds fall into two distinct structural classes
(Fig. 1), which largely correlate with cross-resistance phenotypes: in A. fumigatus
isolates with mutations in the cyp51A gene, cross-resistances within the substance pairs
ITZ/PSZ and VRZ/ISAZ are most strongly correlated (16, 108). ISAZ and its azonium
sulfate derivative for oral formulations have become an alternative for the therapy of
invasive aspergillosis in patients with VRZ intolerance and seem to be more favorable
than VRZ regarding drug-drug interactions (109).

In light of this, the use of at least VRZ along with ITZ as screening drugs is
recommended to cover the range of currently known resistance phenotypes. Where
available, extension of screening to the clinically relevant substances PSZ and even ISAZ
may become advisable in the future.

SPECIES IDENTIFICATION OF ASPERGILLUS

Exact species determination of molds by morphology, including that of Aspergillus
spp., is a nontrivial issue (110). Molds can be slow to generate species-specific mor-
phological traits allowing their discrimination, and they often require rather specific
conditions to do so (111). On Sabouraud’s agar plates, Aspergillus colonies appear as
dense fields of conidiophores of various colors. Of the species discussed here, A. flavus
appears yellowish to greenish, A. fumigatus and its close sibling species dark blue-
green, A. nidulans green to dark yellow, A. niger black, and A. terreus light brownish
(112). Due to the absence or delay of conidium formation, A. fumigatus may vary in its
visual appearance to nearly white (“albino phenotype”) (16, 111, 113). In addition, exact
species boundaries are still not defined in all cases, and classification will ultimately
require sequencing of several loci (e.g., internal transcribed spacer [ITS], tub1, benA, and
cmd [114, 115]). Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF)
mass spectrometric species identification was recently extended to clinically important
molds (116–118). In our own experience, commonly isolated species can readily be
differentiated by using the commercial databases, and in cases where isolates with a
common look (e.g., the bluish appearance of A. fumigatus) do not give rise to identi-
fication via MALDI-TOF, they turn out to be cryptic species not yet included in the
scheme (119).

SUSCEPTIBILITY TESTING PROCEDURES FOR ASPERGILLUS SPP.

There are several assays for susceptibility testing of Aspergillus, such as broth
macrodilution (120), broth microdilution (121–123), and disk diffusion (124, 125) assays,
Etest/MIC strip kits (126–128), and other commercial kits (129). Each method has
distinct advantages and disadvantages; for example, macro- and microdilution assays
are laborious and time-consuming, whereas Etest is easy to perform but expensive
when used on a larger scale, and agar diffusion is inexpensive but not able to indicate
exact MIC values (120).

Subsequent retesting and quantitative determination of MIC values by use of a
reference method are also indicated to determine possible cross-resistance between
compounds. In larger studies, two broth microdilution reference methods are mainly
used for susceptibility testing: the CLSI M38-A2 protocol (121) and the EUCAST E.DEF
9.1 protocol (123, 130). These two standard methods are highly reproducible, and the
MICs can be used for therapeutic selection of antifungal drugs as well as monitoring of
antifungal drug susceptibility during treatment (120).

These two methods differ in several critical technical points, such as the amount of
fungal inoculum (4 � 104 to 5 � 104 CFU/ml as determined by use of a spectropho-
tometer for the CLSI method and 2 � 105 to 5 � 105 CFU/ml as determined by use of
a hemocytometer for the EUCAST method). In addition, the EUCAST method uses a
higher percentage of glucose (2%) in the test medium, which facilitates an increased
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growth rate and specifies the use of flat-bottomed microtiter plates (120). It should be
noted that both protocols have limitations in testing amphotericin B, which shows only
a very narrow range of MIC values (0.5 to 2 �g/ml), as well as PSZ and the echinocan-
dins (131). Because of their technical differences, the methods generate different
absolute MIC values (131, 132), and consequently, divergent clinical breakpoints have
been established by both EUCAST and CLSI (121, 133). EUCAST provides clinical
breakpoints for antifungal agents for the interpretation of susceptibility testing results
for fungi. Among molds, species-related clinical breakpoints have been determined
only for A. fumigatus, A. flavus, A. nidulans, A. niger, and A. terreus (133). Using the
EUCAST breakpoint table on these species, resistant isolates against the defined
antifungal agents can be identified and subsequently investigated for mutations. There
are no clinical breakpoints available from the CLSI, and therefore epidemiological cutoff
values must be used (121).

In clinical studies, the results of in vitro susceptibility testing of A. fumigatus isolates
did not necessarily correlate with the expected outcome of antifungal therapy in
infected patients (123). From these studies, the “90-60 rule” was established, which
implies that patients with infections caused by an in vitro susceptible strain will respond
to the antifungal treatment in approximately 90% of cases, whereas patients suffering
from infections caused by resistant isolates will respond in only about 60% of cases
(120, 134). Therefore, although broth microdilution susceptibility screening is valuable
for the selection of the best therapeutic agent, reliable prediction of the clinical
outcome in a patient during antifungal therapy is still cumbersome (120, 130, 131). For
these reasons, the combined use of molecular approaches to identify resistance and the
phenotypic susceptibility testing described above may improve and guide successful
treatment.

EVOLUTION OF cyp51 GENE FAMILIES

The major targets of azole antifungal drugs are cytochrome P450-type enzymes with
sterol 14�-demethylase activity. Inhibition of these enzymes leads to the formation of
aberrant sterols, which do not complement the function of ergosterol in the plasma
membrane and have cytotoxic and eventually fungistatic properties (135). The corre-
sponding genes are called cyp51 in molds and ERG11 in ascomycetous yeast. P450
cytochromes are an evolutionarily ancient protein family and have undergone signifi-
cant expansion and functional divergence across the entire phylogenetic tree. In molds,
this is signified by at least three different lineages of paralogous genes, namely, cyp51A,
cyp51B, and cyp51C.

Transcript and therefore protein abundance can be a direct function of gene copy
number (“gene amplification” or “gene dosage effect”). If another copy of a cyp51 gene
is introduced, this can have a direct effect on drug resistance. For example, heterolo-
gous expression of a second pdmA copy in A. nidulans leads to strains that are
selectable on azole-containing agar (136). This demonstrates that gene amplification
may also contribute to tolerance, possibly as a prerequisite step to the expansion of
cyp51 gene families.

However, in evolutionary time spans, such duplicated genes will be fixed in a
population only when they diverge in function (137). Paralogous genes may be lost and
even may reemerge in populations (138).

Among Aspergillus spp., section Fumigati species contain cyp51A and cyp51B (139).
Heterologous expression as well as biochemical testing has revealed differences be-
tween A. fumigatus Cyp51A and Cyp51B; despite identical substrate preferences and
identical sensitivities against ITZ, VRZ, and PSZ, the isoenzymes showed differential
tolerance of fluconazole, which was significantly increased for Cyp51A compared to
that of Cyp51B (53, 140, 141). On comparing the Cyp51 protein sequences of molds to
those of yeasts, e.g., Erg11 of Candida albicans (51), for which a multitude of substitu-
tions have been brought forward in the context of azole resistance (e.g., see references
142 and 143), it becomes evident that their phylogenetic relationship is far from clear
and that direct knowledge transfer to resistance in molds is difficult, at best. The proper
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paralog to C. albicans ERG11 is probably cyp51B (29). To complicate matters, due to
differences in expression patterns (Cyp51B is expressed constitutively, and Cyp51A is
inducible), Cyp51A is believed to be the major player in azole resistance in A. fumigatus.

Among section Flavi species, at least for A. flavus and A. calidoustus, the additional
paralog cyp51C is present, and in A. calidoustus cyp51A has been lost (144). In these
species, Cyp51C appears to be the key player (see below).

RESISTANCE THROUGH TRANSCRIPTIONAL MODULATION OF cyp51 GENES

To date, three different azole resistance-associated variations of the cyp51A pro-
moter (Fig. 4A) are known for A. fumigatus. Most frequently, two tandem repeats, of 34
and 46 bp, have been described to occur 279 bp upstream of the coding region (84, 98,
145). The TR34 promoter has been found only with the L98H exchange conferring high
ITZ resistance, and the TR46 promoter has been found in conjunction with the Y121F
and T289A exchanges in intermediate to highly VRZ-resistant isolates. Additionally, a
53-bp repeat has been found in isolates that are cross resistant to VRZ and ITZ, without

FIG 4 Mutations in A. fumigatus cyp51A and its promoter region. (A) Alignment of the TR34 (taken from isolate 168 [16]), TR46 (taken from an environmental
isolate [39]), and TR53 (sequence taken from a Columbian isolate [41; P. LePape, personal communication]) promoter alleles with the wild-type sequences from
A. fumigatus (A. fu), A. fischeri (A. fish), and A. oerlinghausenensis (A. oerl) (119). Green, TR34 repeat unit; blue or red, 5= or 3= region and respective repeat
sequences probably stemming from there. Black uppercase residues indicate sequence divergence in the repeat region, lowercase residues indicate adjacent
residues, and black boxes indicate TR34, TR46, and TR53 repeats. (B) In sequencing data, these three different types of A. fumigatus can easily be differentiated
by the 5= upstream sequence preceding the static repeat unit: sequences different from the wild-type sequenc are indicated by underscored nucleotides. (C)
Known amino acid substitutions in Cyp51A. Red, known resistance-conferring substitutions; black, substitutions present in the population, probably without
an effect on drug susceptibility. (D) cyp51A gene features visualized by use of sequence analysis software (Geneious R10). The data are available as a .gb
annotated file or as a Word document in a community-editable form from https://github.com/oliverbader/Aspergillus_fumigatus_cyp51A.
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any further Cyp51A alterations (41, 145). Most recently, isolates with up to three or four
copies of the TR46 repeat were identified (81). Changes in the promoter region must be
interpreted in the context of gene expression levels (Fig. 2D). For the TR34 promoter, a
2-fold higher activity in a reporter assay (146) and an 8-fold higher cyp51A gene
expression level (84) have been reported. However, this remains untested so far for any
other promoter variants. Molecular studies of the altered A. fumigatus cyp51A promoter
have identified opposing actions of the CCAAT binding complex (CBC), which is
involved in the regulation of many genes in eukaryotes by binding CCAAT sites (19, 147,
148), and the HAP complex, an element of the sterol response pathway (20). Genome
sequencing of matched resistant and susceptible isolates also identified a mutation in
hapE, introducing the P88L amino acid exchange, which was shown to be responsible
for the azole resistance phenotype (19). Detailed molecular studies of the HAP complex
have found it to interact with the cyp51A promoter at the repeat elements found in
drug-resistant isolates, there opposing the action of the sterol response factor SrbA
(20). The P88L substitution leads to a significant loss of binding activity, in turn leading
to unopposed action of the sterol biosynthesis response pathway, upregulating cyp51A,
among other sterol biosynthesis genes. As it has been reported only once, the number
of clinical isolates containing the P88L substitution in HapE appears not to be very high,
or at least underinvestigated.

Outside A. fumigatus, data on cyp51 promoter alterations are scarce. Only in Asper-
gillus (Neosartoriya) fischeri and Aspergillus oerlinghausense, the two known species
most closely related to A. fumigatus, can a similar to identical 34-bp core repeat region
readily be identified in the respective promoters of the corresponding cyp51A genes
(Fig. 4A). In A. oerlinghausense, a short insertion upstream of the core repeat correlates
with the decreased azole susceptibility in the only two existing isolates of this new
species (119), albeit molecular confirmation for this observation is currently lacking. The
1-kb regions flanking the three cyp51 paralogs of resistant and susceptible A. flavus
isolates investigated (149) did not deviate from each other, but further upstream a short
4-bp deletion was found in two resistant strains (149). The role of this deletion remains
unclear. In sequencing data for A. fumigatus cyp51A, the type of repeat can easily be
identified by the first 10 bp preceding the static 34-bp repeat unit (Fig. 4B).

RESISTANCE-CONFERRING ALTERATIONS WITHIN Cyp51 PROTEINS

Mair et al. (29) recently suggested the use of a positional nomenclature for fungal
resistance mutations to allow easier transfer of knowledge on orthologous proteins of
different species. Based on a preformed alignment of the amino acid sequences, the
respective number in a reference is given instead of the residue number of the affected
amino acid itself. For Cyp51A-orthologous proteins, the reference was suggested to be
Cyp51A of A. fumigatus, and for Cyp51B-orthologous proteins, the reference is Cyp51B
of Zymoseptoria tritici (anamorph of Mycosphaerella graminicola). For Cyp51C, no
suggestion has yet been made; for the purpose of this review, we therefore name
Cyp51C of A. flavus as the reference. The positional nomenclature is used below and
summarized in Table 3.

Aspergillus fumigatus

In approximately 50 to 80% of the clinically observed ARAf isolates, resistance is
attributable to amino acid exchanges within the Cyp51A protein (16–18, 95). Cyp51B
substitutions seen in the population apparently do not contribute to resistance. Simi-
larly, only a subset of Cyp51A substitutions present in the population lead to resistance
against azoles (Fig. 4C). Notably, several synonymous (silent) mutations in cyp51A are
also known, e.g., at the L358 or C454 codon (82) or the L77, R65, or E356 codon (150).
These are interesting in a phylogenetic context but have no relevance for deduction of
resistance phenotypes. On encountering nonsynonymous mutations in sequencing
data, these must be discriminated from allelic variants without any effects on azole
susceptibility. Several substitutions (e.g., F46Y, H147Y, M172V, N248T, N248K, D255E,
D343N, E427K, and G434C) seem not to be involved in azole resistance, as they are also
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found in different combinations in azole-susceptible isolates (56, 62, 70, 75, 82, 87, 151),
and these sites are mostly localized at the protein surface (152). Among these, isolates
harboring the multiply substituted cyp51A F46Y/G89G/M172V/L358L/E427K/C454C al-
lele (18, 56) appear to form a separate phylogenetic subgroup rather than grouping
with strains with acquired resistance. Nevertheless, these substitutions do occur along-
side those with relevance for reduced antifungal drug susceptibility, e.g., the TR34/L98H
substitution (Fig. 4 and Table 2), likely where the original resistant strain crossed with
another isolate of the population (153, 154).

The Cyp51A-I266N substitution reported from Japan (90) can probably be discarded
as an interpretation error, as the reference sequence already has an asparagine (N)
residue at this codon and it was not observed in subsequent studies (155).

Azole-based inhibitors of Cyp51 interact with the protein by complexing the heme
group located in the catalytic center (152). For amino acid substitutions located along
the periphery of the protein (e.g., S52T, Q88H, N125I, Q141H, S297T, or F495H),
homology modeling suggests that they do not relevantly change its functionality (82,
152). Consequently, residues where substitutions lead to azole resistance, e.g., G54 (57,
83, 90, 103), G138 (56, 75, 104), or M220 (56, 82, 99), are mainly located close to the
opening of one of the two ligand access channels of the protein, blocking the docking
of most azole molecules (82, 152). Similarly, the L98 residue is located on a highly
conserved, loop-forming, arch-like structure affecting the entry to the ligand access
channel (82).

For several of the polymorphisms seen in antifungal drug-resistant isolates, the
resistance-conferring nature of the particular substitution has been confirmed on a
molecular level: biochemical testing of purified recombinant A. fumigatus Cyp51A-
M220K and Cyp51A-G54W expressed in Escherichia coli (141) showed inhibition kinetics
that would be expected from the respective clinical isolates’ phenotypes, namely, a
strong reduction in inhibition by ITZ and PSZ but not by VRZ. Interestingly, the G54W
mutation does occur in both isolates with increased and those with susceptible MIC
values (Tables 1 and 2). This raises the question of whether this substitution is actually
relevant to clinical resistance, despite the fact that its contribution to reduced suscep-

TABLE 3 Cyp51 substitutions in non-A. fumigatus organisms and their correspondence to the reference positions used in the text

Organism

Reference positiona

Reference

Observed substitution

ReferenceGene Positionb Gene Substitution

A. flavus Afcyp51A Y68 29 cyp51A Y132N 160
Afcyp51A K133 29 cyp51A K197N 160
Afcyp51A NA cyp51A A205T 149
Afcyp51A D280 29 cyp51A D282E 160
Afcyp51A M286 29 cyp51A M288L 160
Afcyp51A T470 29 cyp51A T469S 160
Ztcyp51B H430 29 cyp51B H399P 160
Ztcyp51B A453 29 cyp51B D411N 160
Ztcyp51B T496 29 cyp51B T454P 160
Ztcyp51B NA cyp51B T486P 160
Afcyp51C M54 Proposed here cyp51C M54T 149
Afcyp51C S196 Proposed here cyp51C S196F 161
Afcyp51C S240 Proposed here cyp51C S240A 149, 162
Afcyp51C D254 Proposed here cyp51C D254N 149
Afcyp51C I285 Proposed here cyp51C I285V 149
Afcyp51C Y319 Proposed here cyp51C Y319H 149, 191
Afcyp51C A324 Proposed here cyp51C A324P 161
Afcyp51C N423 Proposed here cyp51C N423D 161
Afcyp51C V465 Proposed here cyp51C V465 M 161

A. terreus Afcyp51A M220 29 cyp51A M217I 165
A. niger Afcyp51A K230 29 cyp51A R228Q 166
A. tubingensis Afcyp51A L21 29 cyp51A L21F 166
aAccession numbers for reference sequences are as follows: A. fumigatus cyp51A, AF338659; Zymoseptoria tritici (anamorph of Mycosphaerella graminicola) cyp51B,
AY253234; and cyp51C, AKQ20794.1.

bNA, not applicable (the respective residue was not found at this position in publicly deposited A. flavus sequences).
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tibility has been confirmed in vitro (141). This may also be an example of interactions
with other factors, such as protein-protein interactions potentially dependent on the
genetic strain background.

A very different situation was found for Cyp51A-L98H. In this case, inhibition of
resistance was only marginally impaired, but the enzyme retained some residual
activity at higher triazole concentrations, thus likely explaining its in vivo resistance
phenotype (141). Structural modeling suggests that the L98H substitution is located at
neither the substrate binding cleft nor the central heme group, but rather in a
conserved surface arch, which would support these data (152).

The gold standard for in vivo testing of this is heterologous expression of a potential
resistance-conferring allele in a susceptible host. In the case of cyp51A mutations from
A. fumigatus, susceptible strains of the fungal model organism Saccharomyces cerevisiae
and, more recently, A. fumigatus itself have been used.

S. cerevisiae is readily available for genetic studies and has also served as a host in
several studies of azole resistance in several plant-pathogenic fungi (11). S. cerevisiae
encodes only one Cyp51 ortholog, namely, Erg11. However, deletion of ERG11 results
in lethality, which is why complementation experiments were done in an ERG11
tetracycline-repressible strain (140) or by a one-step gene replacement strategy (75). In
these studies, introduction of the cyp51A or cyp5B gene was shown to complement the
loss of the respective S. cerevisiae enzyme function.

Using a tetracycline-regulatable system, Alcazar-Fuoli et al. (156) were able to
confirm the anticipated phenotypes for several mutations at positions G54 and M220:
elevated ITZ MICs were found for G54E, G54V, G54W, and M220K mutants, and the
M220K and M220I substitutions conferred VRZ resistance. The highest MIC values for
PSZ were found for the G54W mutant, followed by the G54V, G54E, and M220K
mutants. Using the gene replacement strategy, Albarrag et al. (75) confirmed decreased
azole susceptibility for Cyp51A-G138C and Cyp51A-Y431C. Unexpectedly, the G434C
mutant showed no resistance phenotype. The authors suggested that this method may
not be suitable for alterations at the far C-terminal end of the protein, where interac-
tions with as yet unknown binding partners may be the reason for reduced suscepti-
bility in the original host.

Although a high degree of cross- and pan-azole resistance is seen, the quantitative
degree of reduced drug sensitivity still varies between individual substitutions as well
as compounds (Table 2). These effects may also be cumulative in cases where different
promoter modifications and/or amino acid substitutions are combined in a single
isolate. For A. fumigatus, these effects have been best investigated for the TR46/Y121F/
T289A allele. Isolates with this allele show high VRZ MICs along with reduced ITZ and
PSZ susceptibilities (45). A single isolate with only the Y121F substitution showed only
an intermediate VRZ MIC (157). Based on this, molecular dissection of this allele in an
A. fumigatus expression system showed that the combination of TR46 with the Y121F
mutation was sufficient to induce both high ITZ and VRZ resistances, while TR46 or the
T289A mutation alone or in combination did not have a similar effect. Most strikingly,
the strain arising from combination of the T289A mutation with the TR46/Y212F allele
was again less resistant to ITZ (158). Others have also found the TR46/Y121F/T289A
allele in combination with the G448S substitution in an isolate with pan-azole resis-
tance (67). However, the G448S amino acid change can result in cross-resistance to VRZ
and ITZ (159). The MIC values reported for the individual mutations are summarized in
Tables 1 and 2, stratified by testing method.

Aspergillus flavus

Next to A. fumigatus, most other amino acid substitutions in Cyp51 proteins have
been described for Aspergillus flavus. A key difference of this species from other
Aspergillus species is the existence of a third paralog in A. flavus, namely, cyp51C.
Substitutions have been observed in all three paralogs. Using the positional nomen-
clature (Table 3), these were at Y68, K133, D280, M286, and T470 in Cyp51A (149, 160),
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H430, D435, and T496 in Cyp51B (160), and M54, S196, S240, D254, Y319, A324, N423,
and V465 in Cyp51C (149, 161, 162).

As in A. fumigatus Cyp51A, the relevance of the Cyp51 substitutions seen in A. flavus
must also be interpreted with respect to the variability of the respective positions in the
population as well as in other fungal species.

Both the M54T and S240A substitutions in Cyp51C are present in susceptible isolates
and were identified as variants in the respective studies (149, 161) only because the
genome-sequenced strain MYA-384/AF70 (accession number PRJNA217045) contains a
cyp51C isoform divergent from that of the general A. flavus population, including the
reference genome (A. flavus NRRL3357 [accession number PRJNA13284]) (163). The
latter also applies to the S196P, D254N, and N423D substitutions (Fig. 5). Only in
the case of the M54T substitution is a known resistance substitution of Cyp51A (G54)
located in the close vicinity; however, Cyp51A G54 actually corresponds to the adjacent
Cyp51C position G53, not M54 (Fig. 5). At all positions except S196, variation is seen
between other species. The S240A substitution (note that due to the intron in A. flavus
cyp51C, the respective mutation is referred to as a T788G substitution; nucleotide
positions of the mutations are listed in the work of Paul et al. [149]) remains particularly
controversial. In one study, it was associated with a high VRZ MIC, and this phenotype
was confirmed using molecular complementation assays (162). However, others have
also observed it in susceptible isolates (149). Together, these observations make
involvement of these residues in drug resistance unlikely (149).

Of the four remaining residues (I285, Y319, A232, and V465), only I285 shows
variation within the Aspergillus genus (161), but the reported I285V substitution cooc-
curred only in isolates with other potential resistance-conferring substitutions (149).

For cyp51A and cyp51B, microevolution experiments using long-term incubation of
A. flavus on azole-containing media have yielded strains with reduced azole suscepti-
bility and mutations leading to multiple amino acid exchanges in both Cyp51A and
Cyp51B (160). This was most prominent for Cyp51A-K197N (position K133), which was
observed three times independently. Other substitutions (Table 3) were observed only
once, and several less susceptible isolates with unaltered cyp51A and cyp51B sequences
were also observed. Potential changes in cyp51C or other genes were not investigated,
limiting these observations; similarly, the K133 position is not known outside these
experiments to hold resistance substitutions and has not been verified independently.

FIG 5 Amino acid substitutions in Cyp51C proteins. Numbers and asterisks show the reference positions of residues discussed in the text (blue). Vertical dashes,
sequence identity between A. flavus NRRL3357 Cyp51C (accession number XP_002383931) and A. fumigatus Cyp51A (accession number AF338659); dots,
residues identical to those in A. flavus NRRL3357 Cyp51C. Accession numbers for the other reference sequences are as follows: A. flavus ATCC MYA-384/AF70,
KOC15064; A. oryzae RIB40, AB514682; A. nomius, XP_015411243; A. lentulus, AEB77687; Trichophyton interdigitale, EZF31978; Trichophyton tonsurans, EGD95049;
Trichophyton rubrum, XP_003235929; Trichophyton soudanense, EZF72647; Microsporum canis, XP_002845046; Histoplasma capsulatum, EER42982; and Blasto-
myces dermatitidis, EGE84227.
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How any of these substitutions affect antifungal therapy in a clinical setting remains
unclear. In a nonimmunocompromised mouse model, VRZ treatment was not relevantly
impaired by mutations in cyp51C (164). The authors of that study discussed the position
of the Y319H mutation as being rather far from the binding position of azoles and a
potential loss of fitness in resistant strains as explanations for the unexpected results.

Other Aspergillus Species

Data on azole resistance and the underlying mutations in species apart from A.
fumigatus and A. flavus are scarce; however, there are 3 single observations of Cyp51A
alterations reported in the literature (Table 3): the M217I substitution (position M220)
in A. terreus (165), the R228Q substitution (position K230) in A. niger (166), and the L21F
substitution (position L21) in A. tubingensis (166). The isolate with the R228Q substitu-
tion showed a PSZ MIC above the epidemiological cutoff value. For the A. tubingensis
isolate with the L21F substitution, especially the measured ITZ MIC value of 64 �g/ml
was highly elevated compared to those for other isolates (166). Only the M217I
substitution corresponds to a well-known residue (M220) involved in azole resistance in
A. fumigatus. Neither K230 nor L21 has been implicated in Cyp51A-based drug resis-
tance, and neither observed exchange has yet been validated independently.

MOLECULAR METHODS FOR DETECTION OF ALTERATIONS AT cyp51 LOCI
Aspergillus fumigatus

A standard method to detect alterations of the cyp51A gene in fungal isolates is not
yet defined. The most commonly used method is simple PCR amplification of the entire
coding and promoter region, followed by Sanger sequencing of the PCR products.
Identification of the promoter repeat type can easily be achieved by analyzing the 5=
upstream sequence of the static repeat unit (Fig. 4B). Specific methods for detection of
the TR34 and TR46 variants are also available, including several rapid TaqMan-based
approaches and melting curve analyses on LightCycler instruments (Table 4). Utilization
of an AluI-based restriction fragment length polymorphism (RFLP) method (167) at the

TABLE 4 PCR-based assays to characterize molecular resistance azole mechanisms in Aspergillus spp.

PCR use and format Target Reference(s)

Analyses of A. fumigatus cyp51A
Real-time PCR Single regions (�100 bp) 192, 193
Mixed-format real-time PCR TR- and amino acid substitution-specific regions 92, 194
PCR-RFLP Multiple single regions (180–270 bp) 167
Nested PCR, two amplicons F1, TR region to L98; F2, G54 to N266 193
Conventional one-step and nested PCRa Single regions (100–173 bp) for TR34/L98H and M220 175

Single regions (103–143 bp) for TR46 and the L98H substitution 174
PCR with TaqMan probes TR, G54, L98, G138, M220 83

L98H and Y121F substitutions 71
Primer extension TR34 and 15 polymorphic sites 151
LightCycler endpoint genotyping L98H, Y121F substitutions 71
AsperGenius (PathoNostics BV, Maastricht, The Netherlands)

multiplex real-time PCR and melting curve analysisa

TR34, L98H, Y121F, T289A substitutions 25, 107, 176,
177

Real-time RT-PCR cyp51A gene expression 75

Analyses of A. fumigatus genes other than cyp51A
PCR plus sequencing Full cyp51B gene in four amplicons 75
Real-time RT-PCR cyp51B gene expression 75

mdr1 and mdr4 gene expression 75
PCR with TaqMan probes cyp51B S35, P294 151
PCR plus sequencing Full hapE gene 19
PCR plus sequencing, real-time RT-PCR cyp51A, mdr1-4, atrF, cdr1B (abcG1), mfs56 17

Analyses of A. flavus cyp51 genes
PCR plus sequencing cyp51A and -B genes plus 5= and 3= regulatory sequences 160
PCR plus sequencing, TaqMan probes cyp51A, -B, and -C genes plus 5= and 3= regulatory sequences 162
PCR plus sequencing cyp51A, -B, and -C genes plus 5= and 3= regulatory sequences 149

aNon-culture-based, direct investigation of clinical (respiratory) samples was possible after confirmation of Aspergillus DNA in the sample by use of diagnostic
Aspergillus PCR assays.
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L98 codon probably has the highest value for most laboratories, as the assay is readily
performed without the need for specialized equipment. It allows easy simultaneous
detection of both TR34 and TR46 repeats (and likely also others), as well as the L98H
substitution (Fig. 6), therefore encompassing the most frequently encountered
resistance-associated cyp51A alleles. The commercially available AsperGenius assay also
covers these two alleles (Table 4). For a few selected other exchanges at polymorphic
sites, namely, G54 and M220, specialized PCR-based detection methods have been
developed (Table 4).

For all other mutations, including so far unknown ones, PCR amplification of the
gene in either a single (3, 18, 45, 50, 68, 82, 104, 168) or multiple (16, 44, 54, 56, 60, 62,
63, 75, 84, 100, 157, 169–171) amplicons plus subsequent sequencing is necessary.
Identification of mutations in trace files or derived fasta sequences and of the respec-
tive amino acid substitutions is most easily achieved by mapping against a reference
sequence. To facilitate this, we created an annotated reference containing currently
known polymorphic sites along with other relevant features (Fig. 4D) (https://github
.com/oliverbader/Aspergillus_fumigatus_cyp51A). Alternatively, there is also an online
tool available to perform sequence analysis on A. fumigatus cyp51A (172).

Given the low pathogen yields by cultural methods for patients with hematological
malignancies who are at high risk for invasive aspergillosis, it is very likely that azole
resistance is still underdiagnosed in this population (173). The reported high mortality
rates associated with ARAf underline the necessity of using non-culture-based assays
for the detection of both Aspergillus spp. and azole resistance directly from clinical
samples (24, 25, 174, 175). This approach requires higher sensitivity and lower detection
thresholds than those for working on cultured isolates. Molecular methods for detect-
ing cyp51A alterations directly from clinical samples have to combine high sensitivity
and specificity to ensure the amplification of small amounts of Aspergillus DNA and to
avoid cross-reactivity with human DNA. Most formats are PCR-based methods with
subsequent DNA sequence analysis for the detection of mutations. PCR assays inves-
tigating primary clinical samples directly do not have the ability to amplify the whole
cyp51A gene due to the very small amount of intact fungal high-molecular-weight DNA

FIG 6 Interpretation of AluI-digested A. fumigatus cyp51A PCR product surrounding the L98 position. (A) In isolates carrying the L98H
substitution, the AluI restriction site at this codon is abolished (167). (B) A PCR product amplified with the P5-P7 primer pair (16)
encompasses both the L98 site and the promoter repeat region. When digested with AluI, the wild-type product is cleaved into four
fragments, and the length of fragment A is characteristic of the length of the TR region. In L98H isolates, fragments B and C are not cleaved
apart, resulting in a visible size shift. (C) When resolved in a high-percentage (e.g., 2.5%) agarose gel, the size shift is visualized as specific
RFLP patterns for TR34/L98H- and TR46-carrying isolates. Other substitutions cannot be found using this method, as their RFLP patterns
correspond to the wild-type patterns. The method may, however, be suitable to detect other promoter variants.
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in these samples. Therefore, individual PCR assays were established to amplify the key
mutation-carrying gene sections. In this scenario, nested PCR assays using two consec-
utive PCRs amplifying the same gene region have shown the highest sensitivities. A
new real-time PCR-based system for detection of Aspergillus DNA and the TR34/L98H
and Y121F/T289A cyp51A alterations without subsequent DNA sequencing is the
AsperGenius system from PathoNostics (25, 107, 176, 177). This test system is based on
Aspergillus DNA amplification by multiplex real-time PCR followed by melting curve
analysis to detect the mutations in different PCR cycler-based detection channels.
Protocols that have been used successfully directly on clinical samples (bronchoalveolar
lavage [BAL] fluid and blood samples) with low pathogen DNA amounts, e.g., nested
PCR (174) or multiplex PCR (25, 58, 176, 177), are summarized in Table 4. In this rapidly
advancing field, prospective studies are still ongoing.

Other Aspergillus Species

For Aspergillus spp. other than A. fumigatus, there are currently no commonly used
protocols and—to date—no commercially available kits. The best-characterized species
is Aspergillus flavus. Molecular analysis of the cyp51A and cyp51B genes for resistance
mutations was performed using PCR with subsequent DNA sequence analysis (160). In
another study, amplification of cyp51A, -B, and -C included an additional 1 kb of
genomic DNA up- and downstream of the coding regions (162). Assays for the analysis
of cyp51 expression levels by quantitative TaqMan-based real-time PCR have also been
described (162). The aspects of molecular azole resistance detection in A. flavus are also
summarized in Table 4.

OTHER RESISTANCE MECHANISMS

For a significant proportion of azole-resistant clinical A. fumigatus isolates, no
mutations within the cyp51A locus are observed (16–18, 95). Compilation of the MIC
values from the literature (Tables 1 and 2) showed that isolates with the VRZ resistance-
conferring TR46/Y121F/T289A allele fall into two clearly distinct groups with respect to
ITZ cross-resistance, namely, VRZr ITZs/i and VRZr ITZr, in the absence of other cyp51A
mutations. We also previously observed an unusual TR34/L98H isolate with an addi-
tional VRZ MIC of �32 �g/ml (39). Together, these data highlight the multifactorial
ability of the fungus to overcome susceptibility, so the genetic basis for resistance is not
restricted just to mutations within the cyp51A region. However, so far, only a few other
mechanisms have been discussed to contribute to clinical azole resistance.

Most importantly, the expression of ABC transporters can be upregulated in clinical
isolates (Fig. 2E); however, their contribution to azole resistance has not yet been fully
clarified (17, 23). So far, the best-studied transporter in correlation with drug resistance
is the ABC efflux transporter Cdr1B. This transporter shows high homology to the efflux
pump Cdr1p from Candida albicans (CaCdr1), which is regulated by the transcription
factor Tac1. Overexpression of CaCdr1 increases the resistance to fluconazole in both A.
fumigatus (17, 21) and C. albicans (178). A potential regulator of Cdr1B in A. fumigatus
that is similar to Tac1 in C. albicans is the zinc cluster transcription factor AtrR (179).
Mutations in this regulator might provide explanations for increased resistance medi-
ated by overexpression of Cdr1B. Nevertheless, gain-of-function mutations of either the
atrR or cdr1B coding region or their promoters have not been described so far.

Data from in vitro approaches, such as mutagenesis, genetic backcrosses, and
complementation in S. cerevisiae, have led to the identification of other potential drug
resistance genes (19, 22, 180–182), but these have not yet been confirmed to exist in
clinical or environmental isolates.

Especially when interpreting PCR and/or sequencing data in the absence of a culture
isolate for susceptibility testing, it must be kept in mind that the presence of a
particular mutation likely indicates resistance toward specific compounds (high positive
predictive value); however, the absence of a mutation per se does not indicate
susceptibility (low negative predictive value).

Dudakova et al. Clinical Microbiology Reviews

October 2017 Volume 30 Issue 4 cmr.asm.org 1082

http://cmr.asm.org


Standardized phenotypic tests that can be used for diagnostic procedures for
detection of increased sterol biosynthesis or efflux have not yet been proposed.

CONTRIBUTION OF PHYLOGENETIC ANALYSES TO RESISTANCE DETECTION

Using genetic strain typing of a small A. fumigatus strain set, it has been suggested
that the TR34/L98H allele arose only once and has since been propagating through the
A. fumigatus population (35). For isolates with the TR46/Y121F/T289A or G54E/W allele,
similar observations have been made (39, 108). This has led to only a few distinct
lineages, which can be differentiated by both short-tandem-repeat typing (e.g., see
references 24 and 108) and csp1 typing (e.g., see references 39 and 170). Because of this
and a significant degree of cross-resistance to agricultural fungicides, the hypothesis of
an environmental origin of these alleles has been suggested (50). Strains with these
alleles are thought to be propagated in the environment through the use of different
azole compounds by the farming industry. Along with that proposition, an exogenous
route of infection of patients has been proposed for these isolates. In contrast, isolates
with other exchanges at G54 or at M220 or with one of the rarer mutations are more
likely to have originated within the patient under prolonged antifungal therapy with
mold-active azoles.

Short-tandem-repeat typing of A. fumigatus (STRAf typing) utilizes the copy number
variability of nine short repeat sequences, of 2 to 4 bp in length, whose PCR amplicons
are resolved by capillary electrophoresis (183). STRAf typing has a very high discrimi-
natory power (183), and for ARAf isolates, it has been shown to readily demonstrate the
genetic nearness of globally isolated TR34/L98H or G54E strains (108). This makes it an
excellent and robust reference method; however, capillary electrophoresis requires
special equipment, which rules out its use as a rapidly established laboratory technique.
Thus, the typing approach using the repetitive region of the csp1 gene is implemented
more easily (184–186). The csp1 gene is simply amplified by PCR and sequenced, and
the sequence is searched for the number and type of 12-bp-long elements. Their order
gives one of (currently) 27 csp1 types (184). As a single-locus method, it has a lower
discriminatory power than that of STRAf typing, but it is more easily implemented and
is practical even for a single isolate. Among the isolates tested in our own laboratory,
there was a moderate correlation of TR34/L98H isolates with the t04B csp1 type, a type
which has not been described for isolates with any other cyp51A allele (39).

Additionally, sequencing of hypervariable regions in cell wall genes (“TRESP”) (187)
has been shown to yield a sufficiently diverse marker set to discriminate within the A.
fumigatus population. By this analysis, TR34/L98H strains also formed a less diverse (i.e.,
more closely related) subpopulation.

Ultimately, whole-genome sequencing will have to reveal the phylogenetic and
evolutionary relationships among early TR34/L98H A. fumigatus isolates and their
progeny. A first study (154) did indeed find similar rates of recombination between
strains isolated more distantly as well as in close proximity. Similar conclusions of both
local clonal expansion and global recombination were drawn from a study using STRAf
typing (188).

From a clinical point of view, phylogenetic analyses are therefore interesting for
identifying local outbreaks or common sources of infection, but they unfortunately
have— despite a likely common ancestral origin for strains with the major resistance
alleles— only low value for the prediction of azole resistance phenotypes in A.
fumigatus.

CONCLUSIONS

The emergence of Aspergillus strains with azole resistance, and even pan-azole
resistance, spreading through the environment rather than originating under therapy
in individual patients poses a significant threat to vulnerable patient groups. Although
this has not yet been shown for other alleles, most worrying is that at least Cyp51A-
G54W- or Cyp51A-M220K-carrying azole-resistant A. fumigatus strains do not seem to
suffer from growth or fitness defects (189): as in phytopathogens, azole resistance in
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human-pathogenic Aspergillus spp. is likely here to stay. Recombination with other
alleles has already been observed within A. fumigatus cyp51A alleles, as both TR34/L98H
and TR46/Y121F/T289A alleles have been observed in combination with substitutions
seen in the population (39, 81, 154). Since A. fumigatus does have a sexual cycle and
genetically crosses in the wild (153, 154), it stands to reason that despite the initial
clonal expansion, phylogenetic relationships between the different loci and resistance
alleles will blur and eventually dissipate in the future. Within a species, the resistance
traits may freely combine with each other as well as with other traits present in the wild,
leading to increasingly resistant populations. Establishing the local epidemiology, for
which we outlined potential workflows here, and setup of proper patient testing
procedures are therefore indicated in clinical settings.
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